
Evaluating Memory Efficiency and Robustness
of Word Embeddings

Johannes Jurgovsky, Michael Granitzer, and Christin Seifert

Media Computer Science, Universität Passau, Germany
{Johannes.Jurgovsky,Michael.Granitzer,Christin.Seifert}@uni-passau.de

http://mics.fim.uni-passau.de

Abstract. Skip-Gram word embeddings, estimated from large text cor-
pora, have been shown to improve many NLP tasks through their high-
quality features. However, little is known about their robustness against
parameter perturbations and about their efficiency in preserving word
similarities under memory constraints. In this paper, we investigate three
post-processing methods for word embeddings to study their robustness
and memory efficiency. We employ a dimensionality-based, a parameter-
based and a resolution-based method to obtain parameter-reduced em-
beddings and we provide a concept that connects the three approaches.
We contrast these methods with the relative accuracy loss on six intrinsic
evaluation tasks and compare them with regard to the memory efficiency
of the reduced embeddings. The evaluation shows that low Bit-resolution
embeddings offer great potential for memory savings by alleviating the
risk of accuracy loss. The results indicate that post-processed word em-
beddings could also enhance applications on resource limited devices with
valuable word features.

Keywords: natural language processing, word embedding, memory ef-
ficiency, robustness, evaluation

1 Introduction

Word embeddings, also referred to as ”word vectors”[7], capture syntactic and se-
mantic properties of words solely from raw natural text corpora without human
intervention or language dependent preprocessing. In natural language texts,
the co-occurrence of words to appear together in the same context depends on
the syntactic form and meaning of the individual words. In word embeddings
the various nuances of word-to-word relations are distributed across several di-
mensions in vector space. These vector spaces are high-dimensional to provide
enough degrees of freedom for hundreds of thousands of words to allow the
relative arrangement of their embeddings reflect as many pairwise relations as
possible out of the corpus statistics. However, embeddings carry a lot of infor-
mation about words, which is hard to understand, interpret and quantify or may
even be redundant and non-informative.

The NLP community has been successfully exploiting these embeddings over
the last years, e.g. [3, 6]. However, the gain in task-accuracy brings the downside

that high-dimensional continuous valued word vectors require a large amount of
memory. Moreover, embeddings are trained by a fixed-size network architecture
that sweeps through a huge text corpus. Consequently, the total number of
parameters in the embedding matrix is implicitly defined a-priori. Further, there
is no natural transition to more memory efficient embeddings, by which one could
trade accuracy for memory. This is particularly limiting for NLP-applications on
resource limited devices where memory is still a scarce resource. An embedding
matrix with 150,000 vocabulary words can easily require 60-180 Megabytes of
memory, which is rather inconvenient to be transferred to and stored in a browser
or mobile application. This restriction gives rise to contemplate different types
of post-processing methods in order to derive robust and memory-efficient word
vectors from a trained embedding matrix.

In this paper, we investigate three post-processing methods for word vectors
trained with the Skip-Gram algorithm that is implemented in the Word2Vec
software toolkit1[7]. The employed post-processing methods are (i) dimensional-
ity reduction (PCA), (ii) parameter reduction (Pruning) and (iii) Bit-resolution
reduction (Truncation). To isolate the effects on embeddings with different sizes,
sparsity levels and resolutions, we employ intrinsic evaluation tasks based on
word relatedness and abstain from extrinsic classification tasks. Our work makes
the following contributions:

• We show through evaluation that Skip-Gram word embeddings are robust
against linear dimensionality reduction, pruning and resolution-reduction on
all tasks with only moderate loss of < 10% at a reduction of 40%.

• Our experiments reveal that higher-dimensional embeddings capture a larger
fraction of redundant information, which can be exploited in favor of memory
savings.

• We propose the resolution-based post-processing method as a means to grad-
ually trade word vector quality for memory.

The remainder of this paper is structured as follows: First we present related
work from the domain of language modeling and word representations. Next, we
provide a conceptional overview of the post-processing methods used to reduce
the amount of parameters in word embeddings. Then, we describe the experi-
mental setup and the results in detail. A final discussion highlights the benefits
of the different findings for practical applications.

2 Related Work

In computational linguistics, generating count-based language models has been
an active research area since decades. The most common approach involves
three parts: Collecting co-occurrence statistics of words from large text corpora,
transforming (e.g. tf-idf, Point-wise Mutual Information (PMI)) the counts to
derive word association scores and finally applying a dimensionality reduction

1 https://code.google.com/p/word2vec/

method (e.g. PCA, SVD). Dimensionality reduction is used for both smooth-
ing sparsity and reducing the overall amount of parameters in order to obtain
a low-dimensional and dense embedding matrix [1]. In this kind of approach,
the quality of word vectors depends on the choice of methods used. In contrast,
advances in recent years gave rise to new techniques [2–5], that implicitly model
word co-occurrences by predicting context words from observed input words.
Instead of first collecting co-occurrences of context words and then re-weighting
these values with tf-idf or PMI, predictive models directly set the word vectors to
optimally predict the contexts in which the corresponding words tend to appear.
Since similar words appear in similar contexts, the classifier in a predictive model
is trained to assign similar vectors to similar words. In an extensive evaluation,
Baroni et al. [6] ascertain that embeddings of predictive models are superior to
their count-based counterparts on word similarity tasks.

One particularly efficient representative of the family of predictive models is
the Skip-Gram method, proposed by Mikolov et al. [7]. It offers the convenient
property that the output of the model is a linear function of an input word
vector and a context word vector, which not only results in meaningful nearest
neighbours but also in informative relative positions of pairs of word embed-
dings. The intriguing finding is that arithmetic operations on word vectors in
embedding space accurately reflect semantic and syntactic operations on words.
We chose to use these embeddings in our experiments, since they encode a va-
riety of language related information in both local and global neighborhoods. A
thorough explanation of the rationale behind this technique was given by Levy
and Goldberg [9, 10].

Evaluations of word embeddings are published whenever new embedding
methods are proposed. Besides manually inspecting 2D-projections of word vec-
tors (e.g. t-SNE [11], PCA), it is difficult to associate meaning to individual
dimensions. In language modeling, authors have traditionally employed perplex-
ity to evaluate their models. In recent years, the common approach shifted to-
wards testing the embeddings on various word similarity or word analogy test
datasets [6, 8]. In this domain, the work of Chen et al. [12] is the closest one to
ours. Therein, they include a short section about information reduction capabil-
ities of embeddings with limited experiments on other types of embeddings. We
were particularly interested in preserving the linear structure in Word2Vec-
embeddings under limited memory conditions. So far, we are not aware of other
experiments that explore ways to reduce word vectors in terms of memory.

3 Methodology

The word embeddings we use in our experiments, are obtained from Mikolov’s
Skip-Gram algorithm [7]. As a recent study [9] revealed, the algorithm factor-
izes an implicit word-context matrix, whose entries are the Point-wise Mutual
Information of word-context pairs shifted by a constant offset. This PMI-matrix
M ∈ R|V |×|V | is factorized into a word embedding matrix W ∈ R|V |×d and a
context matrix C ∈ Rd×|V |, where |V | is the number of words in the vocabulary

and d is the number of dimensions of each word vector. The context matrix is
only required during training and usually discarded afterwards. The result of
optimizing the Skip-Gram’s objective is that word vectors (rows in W) have
high similarity with respect to their cosine-similarity in case the words are syn-
tactically or semantically similar. Besides that, the word vectors are dense and
have significantly fewer dimensions than there are context words - columns in
M . With sufficiently large d, the PMI-matrix could be perfectly reconstructed
from its factors W and C, and thus provide the most accurate information about
word co-occurrences in a corpus [6]. However, increasing the dimensionality d of
word vectors also increases the amount of memory required to store the embed-
ding matrix W . When using word embeddings in an application, we do not aim
for a perfect reconstruction of the PMI-matrix but for reasonably accurate word
vectors that reflect word similarities and word relations of language. Therefore,
a more memory-efficient, yet accurate version of W would be desirable.

3.1 Memory Reduction with Post-Processing

More formally, we want to have a mapping τ from the full embedding matrix W
to Ŵ = τ(W), where Ŵ can be stored more efficiently while at the same time its
word vectors are similarly accurate as the original vectors in W . For the vectors
in Ŵ to have an accuracy loss as low as possible, word vectors in W must be
robust against the mapping function τ . We consider W robust against the trans-
formation τ , if the loss of τ(W) is small compared to W across very different
evaluation tasks. A memory reduction through τ can be induced by reducing
the number of dimensions, the amount of effective parameters or the parame-
ters’ Bit-resolution. Accordingly, we employed three orthogonal post-processing
methods that can be categorized into dimensionality-based, parameter-based and
resolution-based approaches:

• Dimensionality-based: Methods in this category can be described by the

mapping τdim : R|V |×d → R|V |×d̂, where d̂ < d. Fewer dimensions directly
relate to less required memory. The dimensionality-based approaches provide
a transformation that projects embeddings onto a lower-dimensional sub-
space while preserving the dominant properties of words. Both linear (e.g.
PCA) and non-linear dimensionality (e.g. multilayer Autoencoder) reduction
methods are applicable, as long as the inverse τ−1 of the transformation is
available. In both variants, the computational overhead for computing τ and
the memory overhead for storing the inverse τ−1 have to be considered. For
linear transformations there is no memory overhead since the transformation
can once be applied to the embedding matrix and subsequent methods can
use the transformed embeddings alike. If there is reason to assume that the
word vectors lie on a nonlinear manifold, nonlinear dimensionality reduction
techniques can find a mapping to the components of the potentially low-
dimensional manifold. Both the computational overhead for estimating the
nonlinear components and the memory overhead for storing the inverse of
the mapping alongside with the transformed embeddings is high.

• Parameter-based: Whereas dimensionality-based methods change the bases
of the embedding space, parameter-based methods leave the structure un-
touched but directly modify individual parameter values in the embedding
matrix: τpar : R|V |×d → R|V |×d, where τpar is supposed to map most values
to zero and leave only few non-zero elements in the output matrix. For in-
stance, a simple pruning strategy can be used. Then, the output of τpar is a
sparse matrix that can be stored more efficiently.

• Resolution-based: τres : R|V |×d → {0, · · · , r − 1}|V |×d, where r ∈ N+ is the
resolution of the coordinate axes. With discrete coordinates, values can be
stored at lower Bit-precision. Resolution-based methods discretize the coor-
dinate axes into distinct intervals and thus reduce the resolution of the word
vectors. For instance, the Bit-Truncation method subdivides the embedding
space into regions of equal size.

d
|V|

Bits

d
|V|

Bits

Parameter-based (Pruning) Resolution-based (Bit-Truncation)

d
|V|

Dimensionality-based (PCA)

PCA

d’
|V|

Bits

Fig. 1: Three methods for post-processing a word embedding matrix: PCA-
Reduction (top), Pruning across all Bit-planes (left) and Truncation of the least
significant Bits (right).

In this work, we select one method of each category. In particular, we ex-
plore the robustness and memory efficiency of embeddings after applying PCA-
reduction, Pruning and Bit-Truncation. In the following section we describe the
selected methods along with the rationale for the selection (see Figure 1).

3.2 Post-Processing Methods

We employ the following post-processing methods:

Linear Transformation Dimensionality-based approaches assume that points
are not uniformly scattered across the embedding space but exhibit certain di-
rections of dominant variations. If there is some kind of structure in the data, it

should be possible to exploit it by means of representing the same data with fewer
dimensions. If the discarded dimensions only accounted for redundant informa-
tion, we would obtain basis vectors that describe the word embeddings equally
well but with fewer parameters. Since our evaluation tasks rely on vector arith-
metic and cosine similarities, we do not use nonlinear dimensionality reduction
methods as these operations would be meaningless on the transformed embed-
dings L̂ produced by a nonlinear mapping. Therefore, we used the PCA-solution
as a linear transformation to obtain lower dimensional embeddings.

Pruning With Pruning we refer to a parameter-based method that discards
a subset of the values in the embedding matrix by setting them to zero. With
λ ∈ [0, 1] we denote the Pruning level. Our naive pruning strategy is agnostic
to word vectors since it determines a global threshold value pλ from the whole
matrix in such a way that λ ∗ 100% of the matrix’s values are greater than the
threshold. All values wij below that threshold |wij | < |pλ| are set to zero. As a
result of the pruning operation, we obtain a sparser embedding matrix with a de-
gree of sparsity equivalent to 1−λ. Sparse matrices can be compressed more easily
and thus require less memory than dense matrices. The rationale for using Prun-
ing as reduction strategy arose from the observation that on normalized word
vectors, pruning gradually projects points onto their closest coordinate axis. As
we increase the pruning level, more points have coordinates that are aligned with
the coordinate axes. Due to the normalization, this alignment gradually affects
some but not all dimensions of individual word vectors. We hypothesize that up
to a certain pruning level, the inaccuracy induced by Pruning has no qualitative
effect on word vector arithmetic and word similarity computations.

Bit-Truncation Besides a plain reduction of parameters by means of projection
on fewer principle components, we explored a rather memory-focused approach
that leaves the embedding dimensions untouched but migrates continuous word
embeddings to discrete ones. The motivation is that in distributed embeddings
the factors on all dimensions partially contribute to the meaning of a word.
Thus, there should exist some degree of contribution which makes the meaning
shift from one notion to another whereas for smaller contributions, the meaning is
unaffected. We can exploit this relationship between the proximity of the embed-
dings’ values and their similarities in meaning for purposes of memory efficiency
by imposing resolution constraints on the value range along each coordinate.
The Skip-Gram algorithm is defined on continuous valued word vectors which
assumes each dimension to be real-valued. Figuratively, continuous embeddings
allow for arbitrary positioning of a word’s embedding in embedding space up to
the precision of the datatype used. With Bit-Truncation we rasterize the em-
bedding space uniformly by subdividing the range of values on each coordinate
axis into distinct groups. Thus, all the factors of a distributed embedding still
contribute to the meaning but only up to some pre-defined precision.

For the Bit-Truncation method, we adopt the approach described in [12]
with slight adaptions. To reduce the resolution of the real numbers that make

up the embedding matrix, first we shift the values to the positive range. Then
we re-scale the values to the interval [0, 1] and multiply them by 2B , where B
is the number of Bits we want to retain. Finally we cast the values to a 32-Bit
Integer datatype. After casting to Integer, each coordinate axis has a resolution
of r = 2B non-overlapping equally-spaced intervals. Consequently, the number
of distinguishable regions in embedding space R> = rd is exponential in the
number of dimensions d.

4 Experimental Setup

In all experiments we used word vectors estimated with the Skip-Gram method
of the word2vec-toolkit from a text corpus containing one billion words. The
corpus was collected from the latest snapshot of English Wikipedia articles2. Af-
ter removing words that appeared less than 100 times, the vocabulary contained
148,958 words, both uppercase and lowercase. We used a symmetric window
covering k = 9 context words and chose the negative-sampling approximation
to estimate the error from neg = 20 noise words. With this setup, we computed
word vectors of several sizes in the range d ∈ [50, 100, 150, 300, 500]. After
training, all vectors are normalized to unit length. To evaluate the robustness
and efficiency of word vectors after applying post-processing, we compare PCA-
reduction, Pruning and Bit-Truncation on three types of intrinsic evaluation
tasks: word relatedness, word analogy and linguistic properties of words. In each
of these tasks, we use two different datasets.

Word Relatedness: The WordSim353 (WS353)[13] and MEN [14] datasets
are used to evaluate pairwise word relatedness. Both consist of pairs of English
words, each of which has been assigned a relatedness score by human evaluators.
The WordSim353 dataset contains 353 word pairs with scores averaged over
judgments of at least 13 subjects. For the MEN dataset, a single annotator
ranked each of the 3000 word-pairs relative to each of 50 randomly sampled
word-pairs. The evaluation metric is the correlation (Spearman’s ρ) between the
human ratings and the cosine-similarities of word vectors.

Word Analogy: The word analogy task is more sensitive to changes of the
global structure in embedding space. It is formulated as a list of questions of
the form ”a is to â as b is to b̂”, where b̂ is hidden and has to be guessed from
the vocabulary. The dataset we use here was proposed by Mikolov et al. [8]
and consists of 19544 questions of this kind. About half of them are morpho-
syntactical (wa-syn) (loud is to louder as tall is to taller) and the other half
semantic (wa-sem) questions (Cairo is to Egypt as Stockholm is to Sweden).
It is assumed that the answer to a question can be retrieved by exploiting the
relationship a→ â and applying it to b. Since Word2Vec-embeddings exhibit
a linear structure in embedding space, word relations are consistently reflected
in sums and differences of their vectors. Thus, the answer to an analogy question
is given by the target word wt whose embedding wt is closest to wq = â−a+ b

2 https://dumps.wikimedia.org/enwiki/20150112/

with respect to the cosine-similarity. The evaluation metric is the percentage of
questions that have been answered with the expected word.

Linguistic Properties: Schnabel et al. [15] showed that results from intrin-
sic evaluations are not always consistent with results on extrinsic evaluations.
Therefore, we include the recently proposed QVEC-evaluation3[16] as additional
task. This evaluation uses two dictionaries of words, annotated with linguis-
tic properties: a syntactic (QVEC-syn) dictionary (e.g., ptb.nns, ptb.dt) and
a semantic (QVEC-sem) dictionary (e.g., verb.motion, noun.position). The
proposed evaluation method assigns to each embedding dimension the linguis-
tic property that has highest correlation across all mutual words. The authors
showed that the sum over all correlation values can be used as an evaluation
measure for word embeddings. Moreover, they showed that this score has high
correlation with the accuracy the same embeddings achieve on real-world clas-
sification tasks.

5 Results

Since we evaluate the robustness of word embeddings against post-processing,
we report the relative loss induced by applying a post-processing method. The
loss is measured as the difference between the score of original embeddings and
the score of post-processed embeddings. In case of the word relatedness task,
the score is the Spearman correlation. On the word analogy task, the score is
given as accuracy. And on the linguistic properties task, the score is the output
of the QVEC evaluation method. We divide the loss by the score of the original
embeddings to obtain a relative loss that is comparable across tasks.

5.1 Robustness of Word Vectors

In Figure 2 we report the mean relative loss, averaged over the five word vector
sizes on all datasets. The percentage of reduction refers to the fraction of principle
components with lowest eigenvalues that were discarded after applying PCA and
to the fraction of parameters that were set to zero after pruning, respectively.

The word embeddings show a similar trend for all three post-processing meth-
ods. A small relative reduction results in a small loss, whereas a large reduction
leads to a large loss. For all methods, the loss increases exponentially with the
percentage of reduction. On the word analogy datasets, the loss is consistently
higher than on the word relatedness and QVEC datasets. In particular, the rel-
ative loss on word relatedness datasets is predominantly unaffected (relative loss
< 10%) by post-processing up to a reduction threshold of 40%. Compared to the
naive Pruning approach, PCA-transformed embeddings suffer lower loss on all
tasks. Actually, on WordSim353 and MEN, PCA-reduced embeddings exhibit
slight negative loss (< 3%). Bit-Truncation produces no loss on any dataset
until the Bit-resolution of the parameters is lower than 8-Bit. To summarize,

3 https://github.com/ytsvetko/qvec

0 10 20 30 40 50 60 70 80 90
Reduction [%]

10

0

10

20

30

40

50

60

70

80

90

100

Lo
ss

 [
%

]
wa-syn

wa-sem

WordSim353

MEN

(a) PCA

0 10 20 30 40 50 60 70 80 90
Reduction [%]

10

0

10

20

30

40

50

60

70

80

90

100

Lo
ss

 [
%

]

wa-syn

wa-sem

QVEC-syn

QVEC-sem

WordSim353

MEN

(b) Pruning

32 24 16 109 8 7 6 5 4 3 2 1
Bit Resolution

10

0

10

20

30

40

50

60

70

80

90

100

Lo
ss

 [
%

]

wa-syn

wa-sem

QVEC-syn

QVEC-sem

WordSim353

MEN

(c) Bit-Truncation

Fig. 2: Mean relative loss of embeddings after (a) PCA: percentage of re-
moved dimensions, (b) Pruning: percentage of removed parameters and (c) Bit-
Truncation: remaining Bits. Scores on the QVEC datasets are not shown for
PCA since they are not comparable across different word vector sizes.

the Skip-Gram word embeddings are most robust against post-processing with
resolution-based Bit-Truncation and the dimensionality-based PCA-reduction.

5.2 Memory Efficiency

The percentage of reduction achieved by PCA is directly proportional to mem-
ory savings induced by the smaller number of dimensions. There, the sweet spot
is task-dependent and the relative reduction can be rather high before word
vector quality suffers a loss. In contrast, the number of pruned values is not
directly proportional to memory savings, since the coding of sparse matrices
requires additional memory. For instance, the row compressed storage method
[17] has, without further assumptions about the shape of the matrix, a mem-
ory complexity of O(3k), where k is the number of non-zero elements in the
sparse matrix. Thus, the pruning method would only start to pay off in terms of
memory consumption above a pruning level of 2

3 , which would result in serious
quality-loss. Finally, post-processing the embedding matrix with Bit-Truncation
does not cause any loss on any of the evaluated datasets up to 75% reduction
(24Bit). For resolutions below r = 28, all evaluated datasets respond to the low-
precision embeddings with abruptly increasing loss.
Figure 3 shows that higher-dimensional embeddings (d = 500) can be reduced
more aggressively than lower-dimensional ones before reaching the same level
of relative loss. Since a similar behavior holds on all tasks (not shown due to
space constraints), the observation is two-fold: First, it suggests that, the higher-
dimensional the embedding space is, the more non-zero parameters there are and
the higher their resolution is, the more redundant is the information that is cap-
tured in the embeddings. Secondly, the consistency across dimensionality-based
and parameter-based methods indicates that neither the number of dimensions

or parameters nor the continuous values alone but the number of distinguishable
regions in embedding space is crucial for accurate word embeddings.

0 10 20 30 40 50 60 70 80 90
Reduction [%]

10

0

10

20

30

40

50

60

70

80

90

100

Lo
ss

 [
%

]

d = 50

d = 100

d = 150

d = 300

d = 500

(a) PCA

0 10 20 30 40 50 60 70 80 90
Reduction [%]

10

0

10

20

30

40

50

60

70

80

90

100

Lo
ss

 [
%

]

d = 50

d = 100

d = 150

d = 300

d = 500

(b) Pruning

32 24 16 109 8 7 6 5 4 3 2 1
Bit Resolution

10

0

10

20

30

40

50

60

70

80

90

100

Lo
ss

 [
%

]

d = 50

d = 100

d = 150

d = 300

d = 500

(c) Truncation

Fig. 3: Relative loss of embeddings on the syntactic word analogy dataset (wa-
syn) after PCA (a), Pruning (b) and Bit-Truncation (c).

With a sufficiently large Bit-resolution the accuracy of all embedding sizes
approximates the same accuracy level as with continous values. Thus, we can
confirm the finding in [12] also for Skip-Gram embeddings: The same accuracy
can be achieved with discretized values at sufficiently large resolutions. Addi-
tionally, we state that this observation not only holds for cosine-similarity on
word relatedness tasks but also for vector arithmetic on the word analogy task
and for QVEC on the linguistic properties task.
To summarize, Skip-Gram word embeddings can be stored more efficiently using
a post-processing method that reduces the number of distinguishable regions
R> = (2B)d in embedding space. Pruning does so by producing increasingly
large zero-valued regions around each coordinate axis (2B − const.). PCA does
so by mapping the word vectors into an embedding space with fewer dimensions
d̂ < d. And Bit-Truncation directly lowers the resolution of each coordinate by
constraining the Bit-resolution B̂ < B.

6 Discussion

Memory efficiency: If an application can take a loss in word vector accuracy
in favor of memory or transmission times, Skip-Gram embeddings can be re-
duced with all three evaluated methods. Thereby, pruning is the least efficient
method as the overhead introduced by sparse coding could only be compensated
by pruning levels above 2

3 . Such an aggressive pruning strategy would result in
an average accuracy loss of more than 30%. In contrast, the linear dimensional-
ity reduction technique worked well on our tasks and it allows for a consistent
transition from higher to lower dimensional embeddings. The accuracy of PCA-
reduced embeddings even improves over equivalently large original non-reduced

embeddings on word relatedness and word analogy tasks (see evaluation data
online4). Thus, in terms of memory, it can be more efficient to first train high-
dimensional embeddings and afterwards reduce them with PCA to the desired
size. The resolution-based approach provides the greatest potential for memory
savings. With only 8-Bit precision per value, there is no loss on any of the tasks.
A straight-forward implementation can thus fit the whole embedding matrix in
only 25% of memory.
Resolution and Semantic Transition: Another observation is depicted in Ta-
ble 1. On the word analogy dataset, the transition from lower to higher-precision
values not only yields increasingly better average accuracy but also corresponds
to a semantic transition from lower to higher relatedness. Even if the embed-
dings’ values have only 3-Bit precision, the retrieved answer words are not totally
wrong but still in some kind related to the expected answer word. It seems that
some notions of meaning are encoded on a finer scale in embedding space and
that these require more Bits to remain distinguishable.

Table 1: Answer words for several country-currency analogy questions from word
embeddings at different resolutions. Finally, all answer words are currencies.

Questions Expected 3-Bit 4-Bit 5-Bit 6-Bit 7-Bit

Europe euro : Japan ? yen Nagasaki Taiwan yen yen yen
Europe euro : Korea ? won Kim PRC PRC PRC dollar
Europe euro : USA ? dollar Dusty proposal US euros dollar
Europe euro : Brazil ? real Alegre proposal dollar euros euros
Europe euro : Canada ? dollar Calgary Calgary dollar dollar dollar

For coarse resolutions (3-Bit) the regions in embedding space are too large
to allow an identification of a country’s currency. Because there are many words
within the same distance to the target location, the most frequent one is retrieved
as answer to the question. As the resolution increases, regions get smaller and
thus more nuanced distances between word embeddings emerge, which yields
not only increasingly accurate but also progressively more related answers.

7 Conclusion

In this paper, we explored three methods to post-process Skip-Gram word em-
beddings in order to identify means to reduce the amount of memory required to
store the embedding matrix. Therefore, we evaluated the robustness of embed-
dings against a dimensionality-based (PCA), parameter-based (Pruning) and
a resolution-based (Bit-Truncation) approach. The results indicate, that em-
beddings are most robust against Bit-Truncation and PCA-reduction and that

4 http://tinyurl.com/jj-ecir2016-eval

preserving the number of distinguishable regions in embedding space is key for
obtaining memory efficient (75% reduction) and accurate word vectors. Espe-
cially resource limited devices can benefit from these compact high-quality word
features to improve NLP-tasks under memory constraints.

Acknowledgments. The presented work was developed within the EEXCESS
project funded by the European Union Seventh Framework Programme FP7/2007-
2013 under grant agreement number 600601.

References

1. Turney, P. D., Pantel, P.: From frequency to meaning: Vector space models of se-
mantics. Journal of artificial intelligence research, 37(1), 141–188 (2010)

2. Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language
model. The Journal of Machine Learning Research, 3, 1137–1155 (2003)

3. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. Jour. of Mac. Lea. Res., 12,
2493–2537 (2011)

4. Mnih, A., Hinton, G.: Three new graphical models for statistical language modelling.
In: ICML, pp. 641–648, ACM, June (2007)

5. Huang, E. H., Socher, R., Manning, C. D., Ng, A. Y.: Improving word representa-
tions via global context and multiple word prototypes. In: 50th Annual Meeting of
the Association for Computational Linguistics, pp. 873–882, ACL, July (2012)

6. Baroni, M., Dinu, G., Kruszewski, G.: Dont count, predict! a systematic compar-
ison of context-counting vs. context-predicting semantic vectors. In: 52nd Annual
Meeting of the Association for Computational Linguistics, pp. 238–247 (2014)

7. Mikolov T., Chen K., Corrado G., Dean J.: Efficient estimation of word representa-
tions in vector space. arXiv.org, 2013

8. Mikolov, T., Yih, W. T., Zweig, G.: Linguistic Regularities in Continuous Space
Word Representations. In: HLT-NAACL, pp. 746–751, June (2013)

9. Levy, O., Goldberg, Y.: Neural word embedding as implicit matrix factorization. In:
Advances in Neural Information Processing Systems, pp. 2177–2185 (2014)

10. Goldberg, Y., Levy, O.: word2vec Explained: deriving Mikolov et al.’s negative-
sampling word-embedding method. arXiv preprint arXiv:1402.3722., (2014)

11. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. Journal of Machine
Learning Research, 9(2579-2605), 85, (2008)

12. Chen, Y., Perozzi, B., Al-Rfou, R., Skiena, S.: The expressive power of word embed-
dings. ICML, Deep Learning for Audio, Speech and Lang. Proc. Workshop (2013)

13. Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G.,
Ruppin, E.: Placing search in context: The concept revisited. In: 10th International
Conference on World Wide Web, pp. 406–414, ACM, April (2001)

14. Bruni, E., Tran, N. K., Baroni, M.: Multimodal Distributional Semantics. J. Artif.
Intell. Res.(JAIR), 49, pp. 1–47, (2014)

15. Schnabel, T., Labutov, I., Mimno, D., Joachims, T.: Evaluation methods for un-
supervised word embeddings. In: Emp. Met. in Nat. Lang. Proc., (2015)

16. Ling, Y. T. M. F. W., Dyer, G. L. C.: Evaluation of Word Vector Representations
by Subspace Alignment. In: Emp. Met. in Nat. Lang. Proc., pp. 2049–2054, ACL,
Lisbon (2015)

17. Saad, Y.: Iterative methods for sparse linear systems. Siam (2003)

